- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Allen, Daniel C (1)
-
Apgar, Travis M (1)
-
Atkinson, Carla L (1)
-
Bogan, Michael T (1)
-
Busch, Michelle H (1)
-
Compson, Zacchaeus G (1)
-
Cook, Stephen (1)
-
Del_Pozo-Valdivia, Alejandro I (1)
-
Dunleavy, Howard (1)
-
Dunleavy, Howard P (1)
-
Gill, Brian A (1)
-
Harrison, G T (1)
-
Hollien, Kelsey D (1)
-
Ivanov, Kaloyan (1)
-
Leathers, Kyle (1)
-
Malish, Megan C (1)
-
Marek, Paul E (1)
-
Mims, Meryl C (1)
-
Neeson, Thomas M (1)
-
O'Malley, Grace L (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Subterranean arthropods are important components of soils and contribute essential food-web functions and other ecosystem services, however, their diversity and community composition has scarcely been assessed. Subterranean pitfall traps are a commonly used method for sampling soil habitats in Europe but have never been widely implemented in the Americas. We used subterranean pitfall traps to sample previously unsurveyed arthropod communities in southwestern Virginia, U.S. Traps were placed in shallow subterranean habitats (SSHs), underground habitats close to the surface where light does not penetrate, and more specifically at the interface between the soil and underlying “milieu souterrain superficiel”—a microhabitat consisting of the air-filled interstitial spaces between rocks (abbreviated MSS). In total, 2,260 arthropod specimens were collected constituting 345 morphospecies from 8 classes, 33 orders, and 94 families. A region of the mitochondrial cytochromecoxidase subunit I (COI) gene was amplified and sequenced, and objective sequence clustering of 3% was used to establish molecular operational taxonomic units (mOTUs) to infer observed species richness. In all, 272 COI barcodes representing 256 mOTUs were documented for rare soil-dwelling arthropod taxa and are published to build a molecular library for future research in this system. This work is the first taxonomically extensive survey of North American soil-dwelling arthropods greater than 10 cm below the soil surface.more » « less
-
Gill, Brian A; Allen, Daniel C; Mims, Meryl C; Neeson, Thomas M; Ruhi, Albert; Atkinson, Carla L; Shogren, Arial J; Apgar, Travis M; Compson, Zacchaeus G; Cook, Stephen; et al (, Limnology and Oceanography: Methods)Abstract Studies of stream macroinvertebrates traditionally use sampling methods that target benthic habitats. These methods could underestimate biodiversity if important assemblage components exist outside of the benthic zone. To test the efficacy of different sampling methods, we collected paired reach‐wide benthic and edge samples from up to 10 study reaches in nine basins spanning an aridity gradient across the United States. Edge sampling targeted riparian‐adjacent microhabitats not typically sampled, including submerged vegetation, roots, and overhanging banks. We compared observed richness, asymptotic richness, and assemblage dissimilarity between benthic samples alone and different combinations of benthic and edge samples to determine the magnitude of increased diversity and assemblage dissimilarity values with the addition of edge sampling. We also examined how differences in richness and assemblage composition varied across an aridity gradient. The addition of edge sampling significantly increased observed richness (median increase = 29%) and asymptotic richness (median increase = 173%). Similarly, median Bray–Curtis dissimilarity values increased by as much as 0.178 when benthic and edge samples were combined. Differences in richness metrics were generally higher in arid basins, but assemblage dissimilarity either increased or decreased across the aridity gradient depending on how benthic and edge samples were combined. Our results suggest that studies that do not sample stream edges may significantly underestimate reach diversity and misrepresent assemblage compositions, with effects that can vary across climates. We urge researchers to carefully consider sampling methods in field studies spanning climatic zones and the comparability of existing data sets when conducting data synthesis studies.more » « less
An official website of the United States government
